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Lattice of Tripotents in a JBW*-Triple 
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The complete lattice of tripotents in a JBW*-triple and the unit ball in its predual 
are respectively proposed as models for the complete lattice of propositions and 
for the generalized normal state space of a nonassociative, noncommutative 
physical system. A subsystem of such a system may be defined in terms of either 
principal ideals in the complete lattice of propositions or norm-closed faces of 
the generalized state space. It is shown that the two definitions are equivalent 
and that each subsystem is associative. 

1. I N T R O D U C T I O N  

In classical probability theory propositions concerning an empirical sys- 
tem are considered to band together to form a Boolean lattice. Quite often 
this is the complete Boolean lattice of  closed and open sets in a hyperstonian 
space. In nonclassical, or noncommutative,  probability theory and accompa-  
nying measure theory this Boolean lattice is replaced by an orthomodular  
lattice or more general orthostructures. In the concrete situation of  a W*-  
algebra or, more generally, a Jordan W*-algebra  the propositional structure 
under consideration is that of  the complete lattice o f  self-adjoint idempotents 
in the *-algebra. When  the W*-algebra is commutat ive or the Jordan W*- 
algebra is associative this reverts to the classical model.  In recent years interest 
has grown in what  might  be described as nonassociative, noncommutat ive  
probability theory. The proper generalization o f  a Jordan W*-algebra appears 
not to be an algebra or, indeed, any space equipped with a binary multiplica- 
tion, but a triple system. Since in this case it makes no sense to speak of  
idempotents, the natural object of  interest is the set of  tripotents, that is to 
say, triple idempotents. The study of  the structure of  the collection o f  tripotents 
in a triple system is the subject of  this paper. 

~ Queen's College, Oxford, United Kingdom. 
2University of Berne, Berne, Switzerland. 

1349 
0020-7748/95/0800-1349507.50/0 �9 1995 Plenum Publishing Corporation 



1350 Edwards and Rtittimann 

The triple system with which we will be concerned is that known as a 
JBW*-triple. Examples of JBW*-triples include Jordan W*-algebras, Hilbert 
spaces, and the space of m • n matrices over the complex field. The first 
main result shows that the set of tripotents in a JBW*-triple, when supple- 
mented with a largest element, forms a complete lattice. Moreover, the proper 
principal ideals in the complete lattice are the complete orthomodular lattices 
of associative probability theory. 

A second object of interest in classical probability theory is the collection 
of probability measures on the Boolean lattice of propositions. For a noncom- 
mutative system represented by a W*-algebra or a Jordan W*-algebra B, this 
may be replaced by the normal state space of B. The set of states of a 
subsystem is usually thought of as being a norm-closed face of the normal 
state space of B. In fact, there is an order isomorphism from the complete 
orthomodular lattice of self-adjoint idempotents in B onto the complete lattice 
of norm-closed faces of the normal state space of B. Moreover, the norm- 
closed face corresponding to a self-adjoint idempotent e in B is the normal 
state space of the W*-algebra or Jordan W*-algebra, the set of self-adjoint 
tripotents in which is the principal ideal generated by e. It follows that 
subsystems can equivalently described either by norm-closed faces of the 
normal state space or by principal ideals in the complete lattice of propositions. 
The second main result of this paper shows that the complete lattice of 
tripotents in a JBW*-triple is order isomorphic to the complete lattice of 
norm-closed faces of what might be thought of as the generalized normal 
state space of the nonassociative system. Moreover, each such face is the 
normal state space of the corresponding associative subsystem. Consequently, 
subsystems again can equivalently be described either by norm-closed faces 
of the generalized normal state space or by principal ideals in the complete 
lattice of propositions. Moreover, every subsystem of this nonassociative, 
noncommutative system is associative. 

2. TRIPOTENTS IN A JBW*-TRIPLE 

This section is devoted to a statement of the main results. However, it 
is first necessary to give the definitions and properties of the structures 
under consideration. 

Recall that a partially ordered set ~ is said to be a lattice if, for each 
pair (e, f )  of elements of ~P, the supremum e v f and the infimum e ^ f exist 
with respect to the partial ordering of ~ .  The partially ordered set ~ is said 
to be a complete lattice if, for any subset M of ~ ,  the supremum vM and 
the infimum AM exist. A complete lattice has a greatest element and a least 
element, denoted by 1 and 0, respectively. A complete lattice is said to be 
atomic if, for each nonzero element f in ~ ,  there exists a minimal nonzero 
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element e in ~ majorized b y f  A complete lattice together with an anti-order 
automorphism e ~ e • on ~ such that, for all elements e and f in 3', the 
supremum of e and e • is equal to 1, e •177 is equal to e, and, if e -<f, t h e n f  
is equal to e v ( f A  e=), is said to be orthomodular. 

Let V be a complex vector space and let C be a convex subset of V. A 
convex subset E of C is said to be a face of C provided that, if txl + 
(1 - t)x2 is an element of E, where xl and x2 lie in C and 0 < t < 1, then 
xl and x2 lie in E. Let -r be a locally convex Hausdorff topology on V and 
let C be -r-closed. Let ~ ( C )  denote the set of all -r-closed faces of C. Both 
0 and C are elements of ~ ( C )  and the intersection of an arbitrary family of 
elements of ~ ( C )  again lies in ~ ( C ) .  Hence, with respect to ordering by 
set inclusion, ~ ( C )  forms a complete lattice. A subset E of C is said to be 
a "c-exposed face of C if there exists a "r-continuous linear functional f on V 
and a real number t such that, for all elements x in C\E, Ref (x )  is less than 
t and, for all elements x in E, Re f (x)  is equal to t. Let %T(C) denote the set 
of 'r-exposed faces of C. Clearly, %~(C) is contained in ~ ( C )  and the intersec- 
tion of  a finite number of elements of %,(C) again lies in %T(C). Moreover, 
both 0 and C belong to %~(C). The intersection of an arbitrary family of 
elements of %~(C) is said to be a "r-semiexposedface of C. Let 5?~(C) denote 
the set of Ir-semiexposed faces of C. Clearly %~(C) is contained in 5?~(C) and 
the intersection of an arbitrary family of elements of Sf~(C) again lies in 
5~ Hence, with respect to the ordering by set inclusion 5?~(C) forms a 
complete lattice and the infimum of  a family of elements of 9~(C) coincides 
with its infimum when taken in ~ ( C ) .  

When Visa  complex Banach space with dual space V* the abbreviations 
n and w* will be used for the norm topology of V and the weak* topology 
of V*. For each subset E of the unit ball VI in V and F of the unit ball V~ 
of V* let the subsets E' and F, be defined by 

E' = {a ~ W{: a(x) = 1 Vx ~ E}, F, = {x ~ Vl:a(x) = 1 Va ~ F} 

Notice that E lies in fin(V1) if and only if (E'), coincides with E, F lies in 
5~ if  and only if (F,) '  coincides with F, and the mappings E ~ E' and 
F ~ F, are anti-order isomorphisms between the complete lattices 5?n(V~) 
and Sfw,(V~*) and are inverses of each other. The reader is referred to Edwards 
and Rtittimann (1985, 1988) for details. 

Recall that a Jordan *-algebra A which is also a complex Banach space 
such that, for all elements a and b in A, Ila*ll -- Ilall,  Ila o bll <- I la l l ' l lb l l ,  
and II {a a a} II = Ilal[ 3, where 

{ a b c }  = a o ( b * o c )  + ( a O b * ) o c -  b * o ( a o c )  (1) 

is the Jordan triple product on A, is said to be a Jordan C*-algebra (Wright, 
1977) or JB*-algebra (Youngson, 1978). A JB*-algebra which is the dual of 
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a Banach space is said to be a Jordan W*-algebra (Edwards, 1980) or a 
JBW*-algebra (Youngson, 1978). A JBW*-algebra A always possesses a unit 
element 1 and has a unique predual A..  Examples of JB*-algebras are C*- 
algebras and examples of JBW*-algebras are W*-algebras, in both cases 
equipped with the Jordan product 

1 
a O b  = ~(ab + ba) 

The self-adjoint parts of JB*-algebras and JBW*-algebras are said to be JB- 
algebras and JBW-algebras, respectively. The set A + of elements a in the 
self-adjoint part Asa of a JBW*-algebra A which are squares of self-adjoint 
elements in A forms a norm-closed generating cone for Asa. The set of elements 
x in the predual A.  of the JBW*-algebra A such that, for all elements a in 
A +, x(a) is nonnegative and x(1) is equal to one is said to be the normal state 
space of A. For the properties of C*-algebras and W*-algebras the reader is 
referred to Pedersen (1979) and Sakai (197 i) and for the properties of Jordan 
algebras to Hanche-Olsen and Stcrmer (1984), Jacobson (1968), Loos (1975), 
and Neher (1987). 

The set ~'(A) of self-adjoint idempotents, the projections, in a JBW*- 
algebra A forms a complete orthomodular lattice with respect to the partial 
ordering defined, for elements e and f i n  ~(A), by e < - f i f  e o f  is equal to 
e, and the mapping e ~ e=, where e I is equal to 1 - e. The mapping e 
{e}, is an order isomorphism from ~(A) onto the complete lattice of norm- 
closed faces of the normal state space of A. Moreover, for each element e 
in ~(A), {e}, is the normal state space of the JBW*-algebra {e A e} and the 
complete orthomodular lattice of setf-adjoint idempotents in eAe is the princi- 
pal ideal {f ~ ~'(A):f-- e} in ~(A) (Battaglia, 1990; Edwards, 1980; Edwards 
and Rattimann, 1985). 

Recall that ~(A) represents the complete lattice of propositions of an 
associative noncommutative system and the normal state space of A represents 
the set of normal states of the system. It follows that every subsystem is 
represented by a sub-JBW*-algebra of A of the form {e A e}, for some self- 
adjoint idempotent e in A. 

A complex vector space A equipped with a triple product (a, b, c) 
{a b c} from A • A • A to A which is symmetric and linear in the first 
and third variables, conjugate linear in the second variable, and satisfies 
the identity 

[D(a, b), D(c, d)] = D({a b c}, d) - D(c, {d a b}) 

where [.,  �9 ] denotes the commutator and D is the mapping from A • A to 
A defined by 
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D(a, b)c = {a b c} 

is said to be a Jordan*-triple. A subspace B of A is said to be a subtriple 
when {B B B} is contained in B and is said to be an inner ideal when 
{B A B} is contained in B. 

When the Jordan *-triple A is also a Banach space such that D is 
continuous from A • A to the Banach space B(A) of bounded linear operators 
on A, and, for each element a in A, D(a, a) is Hermitian with nonnegative 
spectrum and satisfies 

l iD (a ,  a)[I = Ilall 2 

then A is said to be a JB*-triple. A JB*-triple which is the dual of a Banach 
space is called a JBW*-triple. A JBW*-triple A has a unique predual A..  
Examples of JB*-triples are JB*-algebras and examples of JBW*-triples are 
JBW*-algebras, in both cases equipped with the Jordan triple product (1). 
The second dual A** of a JB*-triple A is a JBW*-triple. For details of these 
results the reader is referred to Barton and Timoney (1986), Dineen (1986), 
Friedman and Russo (1986), Horn (1987), Kaup (1983, 1984), Kaup and 
Upmeier (1976), and Upmeier (1985, 1986). 

An element u in a JBW*-triple A is said to be a tripotent if {u u u} is 
equal to u. The set of tripotents in A is denoted by ~(A). Let u be a tripotent 
in the JBW*-triple A. Then, the weak*-continuous conjugate linear operator 
Q(u) and, for j equal to 0, 1, and 2, the weak*-continuous linear operators 
Pj(u) are defined by 

Q(u)a = {u a u}, P2(u) = Q(u) 2 

Pl(u) = 2(D(u, u) - Q ( u ) 2 ) ,  Po(U) = I - 2D(u, u) + Q(u) 2 

The results of Barton and Timoney (1986), Horn (1987), and Loos (1975) 
show that Pi(u) is a weak*-continuous projection onto the eigenspace Aj(u) of 
D(u, u) corresponding to the eigenvaluej/2. The corresponding decomposition 

a = ao(u ) 0 Al(u) Q A2(u) 

is said to be the Peirce decomposition of  A relative to u and Ai(u) is said to 
be the Peirce j-space of  A relative to u. For j,  k, and 1 equal to 0, 1, or 2, 
the Peirce j-space Aj(u) is a sub-JBW*-triple such that {Aj(u)Ak(u)Al(u)} 
is contained in Ai-k+l(u) when j - k + l is equal to 0, 1, or 2, and equal to 
{0 } otherwise. Moreover, 

{A2(u) Ao(U) A} = {A0(u) A2(u) A} = {0} 

and Ao(u) and A2(u) are inner ideals in A. 
The proof of the following result can be extracted from Edwards and 

Rtittimann (1988), Friedman and Russo (1985), and Loos (1975). 
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Lemma 2.1. Let A be a JBW*-triple, let u be a tripotent in A, and let 
A2(u) be the Peirce 2-space of A relative to u. For elements a and b in 
A2(u) define 

a O b =  {aub} ,  a t =  {uau}  

Then, with respect to the multiplication (a, b) ~ a 0 b and involution a 
a*, A2(u) is a JBW*-algebra with unit u. 

Let u and v be elements of ~ We write u • v when 

{ u u v }  = 0  

and we write u --- v if 

{ u v u }  = u 

It follows that --< is an ordering relation and • is a symmetric relation on 
OR(A). Further properties of these two binary relations are summarized below. 
The proof of the theorem can be found in Battagtia (1991) and Edwards and 
Rtittimann (1988). 

Theorem 2.2. Let A be a JBW*-triple, let OR(A) be the collection of 
tripotents in A, and let • and --- be the binary relations defined above. Then: 

(i) (OR(A), <-) is a partially ordered set with least element 0. 
(ii) For an element u in OR(A), u • u if and only if u is equal to 0. 

(iii) If  u and v are elements of  OR(A) such that u • v, then u v v 
exists in the partially ordered set (OR(A), - ) .  

(iv) If  u and v are elements of OR(A) such that u -< v, then there exists 
a unique element w in OR(A) such that w • u and u v w is equal 
to v. 

(v) If  u, v and w are elements of  OR(A) such that u --- v and v • w, 
then u • w. 

(vi) Let (uj)j-~A be a family of elements of OR(A). Then ^j~A uj exists 
in the partially ordered set (OR(A), -----). 

(vii) Let (Uj)j~A be an increasing net in OR(A). Then Vj~A uj exists in 
the partially ordered set (OR(A), --<). 

(viii) Let (uj)j~a be a family of elements of  OR(A) such that Vj~A uj 
exists in the partially ordered set (OR(A), --<), and let u be an 
element of OR(A). If, for all j in A, uj • u, then vj~a uj • u. 

The following result is discussed in Krause (1991, 1995). 

Corollary 2.3. Under the conditions of Theorem 2.2, (OR(A), - ,  •  is 
a generalized orthomodular partially ordered set [in the sense of Mayet- 
Ippolito (1991)] and as such admits a faithful embedding into an orthomodular 
partially ordered set. 
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Let (OR(A)-, ---) be the MacNeille completion of (OR(A), <--), i.e., OR(A)- 
is the union of the set OR(A) and a point set {u=}, and the partial ordering -< 
is extended to ~(A)-  by writing u -< u= for all elements u in ~(A)-.  The 
complete lattice (~(A)-, --<) is said to be the lattice of tripotents in A. In 
order to simplify notation the --- will be suppressed in future references to 
(OR(A)-,--). 

The lattice of tripotents in a JBW*-triple can be taken to represent 
the lattice of propositions of a nonassociative, noncommutative system. Its 
principal ideals represent the lattices of propositions of certain subsystems. 
These are described in the next theorem, the proof of which can be found 
in Edwards and RtRtimann (1988). 

Theorem 2.4. Let OR(A)- be the lattice of tripotents in the JBW*-triple 
A. Then, for each tripotent u in A, the principal ideal {v E ~(A): v -< u} is 
a sub-complete lattice which is identical to the complete orthomodular lattice 
~(A2(u)) of self-adjoint idempotents in the JBW*-algebra A2(u). 

It follows that the subsystem determined by a tripotent u is the associative 
system corresponding to the JBW*-algebra Az(tt ). 

Recall that, for each element u in ~(A), the set {u}, is a norm-exposed 
face of A,,v Define {u~}, to be the set A,,v The following result was proved 
in Edwards and RUttimann (1988). 

Theorem 2.5. Let A be a JBW*-triple with predual A,. 

(i) The mapping u ~ { u }, is an order isomorphism from the complete 
lattice ~(A)-  of tripotents in A onto the complete lattice ,~n(A,,i) 
of norm-closed faces of the closed unit ball A,,I in A,. 

(ii) For each element u in ~ {u}, is the normal state space of 
the JBW*-algebra Az(U ). 

The complete lattice of propositions of a nonassociative system is repre- 
sented by the complete lattice ~ and the generalized normal state space 
of the system is represented by the unit ball A,,I. Principal ideals in OR(A)- 
and norm-closed faces of A,,1 are alternative descriptions of subsystems. The 
result above shows that the two descriptions are equivalent and that every 
subsystem is associative. 

A further result proved in Edwards and RtRtimann (1988) connects the 
complete lattice of tripotents in A with the facial structure of the unit ball in A. 

Theorem 2.6. Let A be a JBW*-triple with predual A,. Then the mapping 
u ~ { u } ,' is an anti-order isomorphism from OR(A)- onto the complete lattice 
~w,(A1) of weak*-closed faces of the closed unit ball A1 in A and 

{ u } , '  = u + Ao(u)  l 
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